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Abstract. Let {u(t, x)}t≥0,x∈Rd denote the solution of a d-dimensional nonlinear stochastic heat equation that is driven by a Gaussian
noise, white in time with a homogeneous spatial covariance that is a finite Borel measure f and satisfies Dalang’s condition. We
prove two general functional central limit theorems for occupation fields of the form N−d

∫
Rd g(u(t, x))ψ(x/N)dx as N → ∞,

where g runs over the class of Lipschitz functions on Rd and ψ ∈ L2(Rd ). The proof uses Poincaré-type inequalities, Malliavin
calculus, compactness arguments, and Paul Lévy’s classical characterization of Brownian motion as the only mean zero, continuous
Lévy process. Our result generalizes central limit theorems of Huang et al. (Stochastic Process. Appl. 131 (2020) 7170–7184; Stoch.
Partial Differ. Equ., Anal. Computat. 8 (2020) 402–421) valid when g(u) = u and ψ = 1[0,1]d .

Résumé. Soit {u(t, x)}t≥0,x∈Rd la solution d’une équation de la chaleur stochastique non-linéaire d-dimensionnelle, perturbée par
un bruit gaussien, blanc en temps et avec une covariance homogène en espace donnée par une mesure de Borel finie qui satisfait la
condition de Dalang. Nous démontrons deux théorèmes de la limite centrale fonctionnels pour des champs d’occupation de la forme
N−d

∫
Rd g(u(t, x))ψ(x/N)dx quand N → ∞, où g est une function lipschitzienne sur Rd et ψ ∈ L2(Rd). La preuve utilise des

inegalités de type Poincaré, le calcul de Malliavin, des arguments de compacité et la caractérisation du mouvement brownien comme
le seul processus de Lévy continu de moyenne nulle. Notre résultat généralise les théorèmes de la limite centrale de Huang et al
(Stochastic Process. Appl. 131 (2020) 7170–7184 ; Stoch. Partial Differ. Equ., Anal. Computat. 8 (2020) 402–421) qui sont valables
lorsque g(u) = u et ψ = 1[0,1]d .
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1. Introduction

Consider the stochastic PDE

∂tu = 1

2
�u + σ(u)η on (0,∞) ×Rd, (1.1)

subject to u(0) ≡ 1 on Rd , where σ :R→ R is non random and Lipschitz continuous, and η denotes a centered, general-
ized Gaussian field whose covariance form is described formally as

Cov
[
η(t, x), η(s, y)

] = δ0(t − s)f (x − y) for all s, t ≥ 0 and x, y ∈Rd,

for a nonnegative-definite tempered Borel measure f on Rd that we fix throughout. To avoid triviality, throughout this
paper, we assume that

σ(1) �= 0.
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Somewhat more formally, this means that the Wiener-integrals

Wt(φ) :=
∫

(0,t)×Rd

φ(x)η(dr dx)
[
t ≥ 0, φ ∈ S

(
Rd

)]
(1.2)

define a centered Gaussian random field with covariance,

Cov
[
Ws(φ1),Wt (φ2)

] = (s ∧ t)〈φ1, φ2 ∗ f 〉L2(Rd ) for all s, t ≥ 0 and φ1, φ2 ∈ S
(
Rd

)
,

where S(Rd) denotes the space of Schwartz test functions. Thus, we can (and will) think of {Wt }t≥0 as an infinite-
dimensional Brownian motion.

Dalang [9] has proved that (1.1) has a mild solution u provided that1

ϒ(λ) := 2

(2π)d

∫
Rd

f̂ (dz)

2λ + ‖z‖2
< ∞, (1.3)

for one, hence all, λ > 0;2 moreover, Dalang (loc. cit.) has proved that R+ ×Rd 
 (t, x) �→ u(t, x) is the only predictable
random field that is continuous in Lk(�) for every k ≥ 2. Condition (1.3) will be in force from now on in order to
guarantee that (1.1) is well posed.

In a companion paper [7] we examine the ergodic-theoretic properties of the spatial random field u(t) = {u(t, x)}x∈Rd

for all t > 0. Specifically, we prove in [7] that:

1. For every t > 0, u(t) is stationary and it is ergodic if f̂ {0} = 0. Moreover, the following conditions are equivalent:
(a) f̂ {0} = 0;
(b) f̂ has no atoms;
(c) f {x ∈Rd : ‖x‖ < r} = o(rd) as r → ∞;
(d) u(t) is ergodic for all t ≥ 0 in the case that σ is a non-zero constant;

2. u(t) is (weakly) mixing for every t > 0 if

lim‖x‖→∞

∫
Rd

eix·zf̂ (dz)

2λ + ‖z‖2
= 0. (1.4)

3. Condition (1.4) is necessary and sufficient for u(t) to be mixing (for every t > 0) in the case that σ is a constant.

When σ is a non-zero constant, parts of these results simplify to well-known ergodic-theoretic facts about stationary
Gaussian processes. Specifically, the equivalence of items 1(b) and 1(d), as well as the validity of item 3, can be found in
the classical work of Maruyama [19]; see also the subsequent exposition of Dym and McKean [12].

As was mentioned, u(t) is ergodic for all t > 0 if

f̂ {0} = 0, (1.5)

and hence by the ergodic theorem,

lim
N→∞

1

Nd

∫
[0,N]d

g
(
u(t, x)

)
dx = E

[
g
(
u(t,0)

)]
a.s. for all g ∈ Lip and t > 0, (1.6)

where Lip denotes the collection of all real-valued Lipschitz-continuous functions on R. The purpose of the present article
is to determine whether, and when, (1.6) has a matching central limit theorem (CLT). In special cases – particularly when
g is linear – such CLTs have recently been studied in Huang et al. [15,16]. Our main goal is to study the non-linear case.
Although our methods (see the description next paragraph) differ from those of Huang et al. (ibid.) where the Malliavin–
Stein method is appealed to estimate the total variation distance, a common point is crucial use of the Malliavin calculus.

Because weak mixing implies ergodicity, it follows immediately from the above remarks (in the case that σ is constant)
that (1.4) is a little stronger than (1.5). It is also well known that mixing is by itself not enough to ensure a CLT. Strong
mixing, however, can imply a CLT (see Bradley [3]). Unfortunately, we are not able to determine precise conditions that
ensure the strong mixing of u(t). Thus, we are forced to introduce novel methods in order to establish the existence of a
CLT: By contrast with “mixing and blocking arguments” of the literature on strong mixing, we use Malliavin’s calculus,

1Our Fourier transform is normalized so that ĥ(z) = ∫
Rd eix·zh(x)dx for all h ∈ L1(Rd ) and z ∈ Rd .

2Caveat: Our ϒ(λ) is equal to Foondun and Khoshnevisan’s 2ϒ(λ/2) [14]. The slight alteration of this notation should not cause any confusion.
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Poincaré-type inequalities, compactness arguments, and Paul Lévy’s characterization theorem of Brownian motion as the
only mean-zero, continuous Lévy process.

Throughout, we assume that

0 < f
(
Rd

)
< ∞. (1.7)

The positivity of the total mass of f merely ensures non triviality. After all, if f (Rd) = 0 then (1.1) is deterministic
and there is nothing left to study. The more interesting finite-mass condition on f turns out to be unimprovable and is
a slightly stronger condition than the mixing condition (1.4). In order to see why, note that because of (1.7) the Fourier
transform of f is a uniformly bounded and continuous function defined by

f̂ (z) =
∫
Rd

eix·zf (dx) for all z ∈Rd .

Therefore, (1.4) is a consequence of the Riemann–Lebesgue lemma and Dalang’s condition (1.3).
The following summarizes our main finding in its simplest form.

Theorem 1.1. Choose and fix t > 0 and g ∈ Lip, and suppose (1.7) holds. Then,

Nd/2
(

1

Nd

∫
[0,N]d

g
(
u(t, x)

)
dx − E

[
g
(
u(t,0)

)]) d−→ X as N → ∞, (CLT)

where X = X(t, g) has a centered normal distribution, and the symbol
d−→ refers to convergence in distribution. Moreover,

(CLT) is equivalent to the condition f (Rd) < ∞ when σ is a constant.

Although it is not so easy to prove Theorem 1.1 directly, it turns out to be possible to give a relatively simple proof of
a much more general result (Theorem 2.3). In order to describe the more general result we need to abstract the problem to
a suitable level, and that requires some work which we relegate to the next section. Moreover, we remark that the central
limit theorem may still hold with f (Rd) = ∞ with different scaling, for instance, f (dx) = ‖x‖−β dx as considered in
[16].

Let us conclude the Introduction by setting forth some notation that will be used throughout. Throughout, let F =
{Ft }t≥0 denote the Brownian filtration generated by the infinite-dimensional Brownian motion {Wt }t≥0 of (1.2), and
assume that F is augmented in the usual way. We write “g1(x) � g2(x) for all x ∈ X” when there exists a real number L

such that g1(x) ≤ Lg2(x) for all x ∈ X. Alternatively, we might write “g2(x) � g1(x) for all x ∈ X.” By “g1(x) � g2(x)

for all x ∈ X” we mean that g1(x) � g2(x) for all x ∈ X and g2(x) � g1(x) for all x ∈ X. Finally, “g1(x) ∝ g2(x) for all
x ∈ X” means that there exists a real number L such that g1(x) = Lg2(x) for all x ∈ X. For every Z ∈ Lk(�), we write
‖Z‖k instead of the more cumbersome ‖Z‖Lk(�). Set

Lip(g) := sup
a,b∈R

|g(b) − g(a)|
|b − a| ,

where 0 ÷ 0 := 0. Thus, g ∈ Lip if and only if Lip(g) < ∞.

2. Main results

Before we describe the main results of this paper we introduce the occupation fields of the processes u(t), for every t > 0,
where we recall u denotes the solution to the SPDE (1.1).

2.1. The occupation field

Choose and fix some t ≥ 0, and consider the collection of all random variables of the form

SN,t (ψ,g) :=
∫
Rd

g
(
u(t, x)

)
ψN(x)dx − E

[
g
(
u(t,0)

)] ∫
Rd

ψ(x)dx, (2.1)

as N > 0 ranges over all positive reals, g ranges over all Lipschitz functions, and

ψN(x) := N−dψ(x/N) for all x ∈ Rd and N > 0, (2.2)
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for a sufficiently-large family of “nice” functions ψ : Rd → R.3 The left-hand side of (CLT) is equal to Nd/2SN,t (1[0,1]d ,
g), but it turns out to be easier to study the CLT for SN,t (ψ,g) for more general functions ψ than just ψ = 1[0,1]d .

As was mentioned in the Introduction, Dalang [9] has proved that condition (1.3) (which is enforced throughout this
paper) implies among other things that u is continuous in Lk(�) for every k ≥ 2. This means that

lim
(s,y)→(t,x)

∥∥u(s, y) − u(t, x)
∥∥

k
= 0 for all k ≥ 2, t ≥ 0, and x ∈ Rd .

A small extension of Doob’s separability theory [11] then implies that there exists a version of u, which we continue to
denote by u, such that R+ ×Rd × � 
 (t, x,ω) �→ u(t, x)(ω) is measurable. Therefore, (2.1) and Fubini’s theorem yield
a well-defined stochastic process provided that∫

Rd

E
(∣∣g(u(t, x)

)∣∣)∣∣ψN(x)
∣∣dx < ∞ for all t,N > 0 and g ∈ Lip .

Since u(t) is stationary, the preceding integral simplifies to

E
(∣∣g(u(t,0)

)∣∣)‖ψ‖L1(Rd ) ≤ (∣∣g(0)
∣∣+ Lip(g)E

(∣∣u(t,0)
∣∣))‖ψ‖L1(Rd ),

which is finite locally uniformly in t ≥ 0 provided that ψ ∈ L1(Rd). In this way we see that the random field{
SN,t (ψ,g);N > 0,ψ ∈ L1(Rd

)
, g ∈ Lip

}
is well defined for every t ≥ 0.

The following is one of the main technical innovations of this paper. Before we state this result, note that because
f (Rd) > 0 the function ϒ defined in (1.3) is strictly decreasing on (0,∞). Therefore, it has an inverse which we denote
by

� := ϒ−1. (2.3)

Theorem 2.1. For all real numbers N,T > 0, ε ∈ (0,1), and k ≥ 2, and for every pair of non-random functions ψ ∈
L1(Rd) ∩ L2(Rd) and g ∈ Lip,

sup
t∈(0,T )

∥∥SN,t (ψ,g)
∥∥

k
≤ A(ε)

√
T k

Nd/2
exp

{
2T �

(
a(ε)

k

)}
Lip(g)‖ψ‖L2(Rd ), (2.4)

where

A(ε) := 16[|σ(0)| ∨ Lip(σ )]√f (Rd)

ε3/2
, a(ε) := (1 − ε)2

2(d+6)/2[|σ(0)| ∨ Lip(σ )]2
. (2.5)

The proof of Theorem 2.1 hinges on careful analysis of a Poincaré inequality for the infinite-dimensional Brownian
motion W defined in (1.2), and the statement of Theorem 2.1 has a number of consequences for the present work. We
mention one of them next.

For every ψ ∈ L2(Rd) we can find ψ1,ψ2, . . . ∈ L1(Rd) ∩ L2(Rd) such that ψn → ψ in L2(Rd) as n → ∞. Because
every SN,t is a random linear functional on L1(Rd)×Lip, it follows readily from (2.4) that {SN,t (ψ

n, g)}∞n=1 is a Cauchy
sequence in Lk(�) for every k ≥ 2. Consequently,

SN,t (ψ,g) := lim
n→∞SN,t

(
ψn,g

)
exists in Lk(�) for every k ≥ 2.

The construction of SN,t (ψ,g) does not depend on the particular sequence {ψn}∞n=1, and SN,t (ψ,g) continues to satisfy
(2.4). Moreover, every SN,t is a random linear functional on L2(Rd) × Lip.

Definition 2.2. Fix some t ≥ 0. By the occupation, or sojourn, field of u(t) we mean the above-defined random field
S[t] := {SN,t (ψ,g);N > 0,ψ ∈ L2(Rd), g ∈ Lip}.

3We will introduce many other functions with many other subscripts. The subscript “N” is however reserved for the notation in (2.2).
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Definition 2.2 has non-trivial content since SN,t (ψ,g) cannot be defined pathwise when ψ ∈ L2(Rd). Nor can we
claim that SN,t (ψ,g) satisfies (2.1) when ψ ∈ L2(Rd). The situation is somewhat akin to what happens in the construction
of the Fourier transform on Rd . In that setting, φ̂(z) is simply equal to the Lebesgue integral

∫
Rd exp(ix · z)φ(x)dx when

φ ∈ L1(Rd), but not when φ ∈ L2(Rd) \ L1(Rd). That is, unless we interpret the integral
∫
Rd exp(ix · z)φ(x)dx suitably

in order to remove all singularities that arise when φ ∈ L2(Rd)\L1(Rd). Thus, we can see that Theorem 2.1 is “removing
the singularities” that arise when we transition from ψ ∈ L1(Rd) to ψ ∈ L2(Rd).

2.2. Functional CLTs

Now that the occupation fields {S[t]}t≥0 has been properly constructed we can describe the main two results of this paper.
These are two functional CLTs, the first of which is the following.

Theorem 2.3. Choose and fix t ≥ 0 and g ∈ Lip. Also, let F ⊂ L2(Rd) be a compact set such that
∫ 1

0 [NF ,L2(Rd )(r)]ε dr <

∞ for some ε > 0, where NF ,L2(Rd ) denotes the metric entropy of F in the metric defined by the norm of L2(Rd) [§7.3].
Then, we have the functional CLT,

{
Nd/2SN,t (ψ,g);ψ ∈ F

} C
(
L2
(
Rd

))
−−−−−−−→ {

�t(ψ,g);ψ ∈ F
}

as N → ∞,

where �t = {�t(ψ,g);ψ ∈ L2(Rd), g ∈ Lip} is a centered Gaussian random field whose covariance function is

Cov
[
�t(ψ,g),�t (�,G)

] = Bt (g,G) · 〈ψ,�〉L2(Rd ), (2.6)

for every ψ,� ∈ L2(Rd) and g,G ∈ Lip. The bilinear form Bt : Lip×Lip → R is non-negative definite and defined in
(5.3) below.

Examples 7.11 and 7.12 can be combined to produced a number of compact sets F ⊂ L2(Rd) to which Theorem 2.3
applies. For now, let us mention the following (see Example 7.11), which immediately implies (CLT), the main part of
Proposition 7.4. The remainder of Proposition 7.4 is not hard to prove; the details can be found in §5.3 below.

Define

[0, z] := [0, z1] × · · · × [0, zd ] for all z ∈ Rd+.

Then, for every fixed t,m ≥ 0 and g ∈ Lip, the random field WN,t := {WN,t (y);y ∈ [0,m]d}, defined by

WN,t (y) := Nd/2

(
1

Nd

∫
[0,Ny]

g
(
u(t, x)

)
dx − E

[
g
(
u(t,0)

)] d∏
j=1

yj

)
, (2.7)

converges weakly in C([0,m]d) to {√Bt (g, g)W(y);y ∈ [0,m]d} as N → ∞, where W denotes a d-parameter, standard
Brownian sheet indexed by [0,m]d (see Walsh [22]).

The proof of Theorem 2.3 produces at no extra cost a second functional CLT that we describe next. We can view the
space Lip as a separable metric space, once it is endowed with the metric defined by the norm,

‖g‖Lip := ∣∣g(0)
∣∣+ Lip(g) for all g ∈ Lip . (2.8)

With this in mind, we have the following.

Theorem 2.4. Choose and fix t ≥ 0 and ψ ∈ L2(Rd). Also, let G ⊂ Lip be a separable and compact set such that∫ 1
0 [NG,Lip(r)]ε dr < ∞ for some ε > 0, where NG,Lip denotes the metric entropy of G in the metric defined by the norm

of Lip. Then, we have the functional CLT,

{
Nd/2SN,t (ψ,g);g ∈ G

} C(Lip)−−−−→ {
�t(ψ,g);g ∈ G

}
as N → ∞,

for the same Gaussian random field �t that appeared in Theorem 2.3.

Examples 7.13 and 7.14 can be combined to create examples of compact sets G to which Theorem 2.4 applies.
Finally let us conclude this section with a closing remark.
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Remark 2.5.

(1) It is easy to see from (2.6) that �t is a random bilinear mapping for every t ≥ 0; that is, for all α1, . . . , αm,β1, . . . , βn ∈
R, ψ1, . . . ,ψm ∈ L2(Rd), and g1, . . . , gn ∈ Lip,

�t

(
α1ψ

1 + · · · + αmψm,β1g
1 + · · · + βng

n
) =

m∑
i=1

n∑
j=1

αiβj�t

(
ψi, gj

)
a.s.

To prove this, we simply compute the variance of the difference of the two sides, and note that the said variance is
zero. The details are elementary, and therefore omitted.

(2) We point out that as a process in time, a functional CLT is proved in [8, Theorem 2.3] using Malliavin–Stein method
provided that f satisfies (1.7) and the reinforced Dalang’s condition (see [8, (1.6)]). It is also possible to consider the
convergence of Nd/2SN,t (1[0,x]×[0,1]d−1 , g) as a function of (t, x). We leave it for interested reader.

3. Preliminaries

We begin the work by briefly collecting and developing some notation and basic background information that will be
used tacitly throughout the remainder of this paper.

3.1. Potential theory

Define, for every t, λ > 0 and x ∈Rd ,

pt (x) = 1

(2πt)d/2
exp

(
−‖x‖2

2t

)
and vλ(x) =

∫ ∞

0
e−λsps(x)ds. (3.1)

The notation should not be misunderstood with our convention in (2.2), as there are no functions p and v to which the
operation in (2.2) can be applied.

We can write the solution to (1.1) in mild form as the solution to the following stochastic integral equation:

u(t, x) = 1 +
∫

(0,t)×Rd

pt−s(x − z)σ
(
u(s, z)

)
η(ds dz); (3.2)

see Dalang [9] and Walsh [22].
Since ps ∈ S(Rd) for every s > 0, we may apply Parseval’s identity to compute ps ∗f and then integrate [exp(−λs)ds]

in order to see that for all λ > 0 and x ∈ Rd ,

(vλ ∗ f )(x) = 2

(2π)d

∫
Rd

eix·zf̂ (z)

2λ + ‖z‖2
dz, whence (vλ ∗ f )(0) = ϒ(λ), (3.3)

where ϒ was defined in (1.3). Moreover, the inverse function � to ϒ – see (2.3) – can be written in the following
alternative forms.

�(a) := inf
{
λ > 0 : (vλ ∗ f )(0) < a

} = inf
{
λ > 0 : ϒ(λ) < a

}
for all a > 0,

where inf∅ := ∞. Since f̂ (0) = f (Rd) ∈ (0,∞) and f̂ is continuous, it follows from (3.3) that: (a) �(a) < ∞ for all
a �= 0 in all dimensions; and (b) � is continuous and strictly decreasing on (0,∞).

3.2. A Burkholder–Davis–Gundy inequality

Suppose L = {L(s, z)}s≥0,z∈Rd is a predictable, space-time random field. Then, the Walsh integral process t �→∫
(0,t)×Rd Ldη is a continuous, L2(�)-martingale with respect to the filtration F , and satisfies

∥∥∥∥
∫
R+×Rd

Ldη

∥∥∥∥
2

k

≤ 4k

∫ ∞

0

(∥∥L(s,•)
∥∥

k
∗ ∥∥L̃(s,•)

∥∥
k
∗ f

)
(0)ds, (3.4)
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for every real number k ≥ 2 provided that the right-hand side of the above inequality is finite at least when k = 2, where

φ̃(x) := φ(−x)

defines the (spatial) reflection of every function φ :Rd →R. Eq. (3.4) can be deduced from the Burkholder–Davis–Gundy
(BDG) inequality [4], using the fact that the optimal constant in the BDG inequality is at most

√
4k (see Carlen and Kreé

[5]). A derivation of (3.4) can be found in Khoshnevisan [17] when f is a function; see also [9]. The present, more
general, case where f is a measure is proved by making small adjustment to the latter argument. We skip the details.

4. Proof of Theorem 2.1

Before we prove Theorem 2.1 let us record two of its ready consequences.
As a first application of Theorem 2.1, we may observe that it implies a priori statistical information about the (ex-

tended) random field SN,t . For instance, Theorem 2.1 and the stationarity of u(t) [7, Lemma 7.1] together imply that

E
[
SN,t (ψ,g)

] = 0 and Var
[
Nd/2SN,t (ψ,g)

]
� ‖ψ‖2

L2(Rd )

[
Lip(g)

]2
,

uniformly for all N,T > 0 and t ∈ [0, T ], and all ψ ∈ L2(Rd) and g ∈ Lip. In this way, we may conclude that

lim
N→∞

∣∣∣∣
∫
Rd

g
(
u(t, x)

)
ψN(x)dx − E

[
g
(
u(t,0)

)] ∫
Rd

ψ(x)dx

∣∣∣∣ = 0 in
⋂
k≥2

Lk
(
Rd

)
,

which is a generalization of the mean ergodic theorem of Chen et al. [7], albeit in the special case that f (Rd) < ∞. Once
again, we emphasize that the random variables inside the absolute value are well defined whenever ψ ∈ L2(Rd), though∫
Rd ψ(x)dx – hence also

∫
Rd g(u(t, x))ψN(x)dx – might not converge absolutely.

As a second application of Theorem 2.1 we present the following tail-probability estimate. It shows how the behavior
of the spectral integral ϒ in (1.3) affects the tails of the distribution of the occupation field, uniformly in the latter
variable N .

Lemma 4.1. For every ε, δ ∈ (0,1) and t ∈ (0, T ) there exists R0 = R0(f, ε, δ, T ) > 1 such that

sup
N>0

P
{
Nd/2

∣∣SN,t (ψ,g)
∣∣ > �

} ≤ exp

{
− a(ε)δ log(�/B)

2ϒ( 1−δ
2T

log(�/B))

}
for all � > R0B, (4.1)

where B := A(ε)Lip(g)‖ψ‖L2(Rd )

√
T , and both a(ε) and A(ε) were defined in Theorem 2.1.

Proof. For every k ≥ 2, t ∈ (0, T ), � > 0, ε ∈ (0,1), ψ ∈ L2(Rd), and g ∈ Lip,

sup
N>0

P
{
Nd/2

∣∣SN,t (ψ,g)
∣∣ > �

} ≤ exp

{
−k

[
log

(
�

B

)
− 2T �

(
a(ε)

k

)
− 1

2
logk

]}
. (4.2)

The inequality (4.2) is an immediate consequence of Theorem 2.1 and Chebyshev’s inequality. We intend to apply (4.2)
with

k = a(ε)

ϒ( 1−δ
2T

log(�/B))
,

which is ≥ 2 provided that �/B is sufficiently large since ϒ vanishes at infinity. Since � and ϒ are inverses to one another,
it then follows from (4.2) that, as long as �/B is large enough,

sup
N>0

P
{
Nd/2

∣∣SN,t (ψ,g)
∣∣ > �

}

≤ exp

{
− a(ε)

ϒ( 1−δ
2T

log(�/B))

(
δ log(�/B) − 1

2
log

[
a(ε)

ϒ( 1−δ
2T

log(�/B))

])}
.
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Next, observe from (1.3) that

λϒ(λ) ≥ 2

(2π)d

∫
‖z‖<1

f̂ (z)dz

2 + ‖z/λ‖ ≥ c := 2

3(2π)d

∫
‖z‖<1

f̂ (z)dz whenever λ > 1. (4.3)

Because f̂ is continuous and f̂ (0) = f (Rd), (1.7) implies that c is a strictly-positive real number. In particular,

δ log(�/B) − 1

2
log

[
a(ε)

ϒ( 1−δ
2T

log(�/B))

]
≥ δ

2
log(�/B),

as long as �/B is sufficiently large. Now we choose R0 accordingly, all the time keeping careful track of the various
parameter dependencies. This completes the proof. �

Equations (4.2) and (4.1) are essentially equivalent. Moreover, they provide tail-probability estimates that depend
crucially on the rate at which ϒ(λ) tends to zero as λ → ∞. Unfortunately, these tail-probability estimates are not
particularly strong, though we have reason to believe that they are not essentially improvable. For instance, we might
observe from (4.3) that

ϒ(λ) ≥ c

λ
for all λ > 1,

where c > 0 does not depend on λ. Thus, it follows that whenever �/B is sufficiently large,

exp

{
− a(ε)δ log(�/B)

2ϒ( 1−δ
2T

log(�/B))

}
≥ e−const·| log(�/B)|2 whenever �/B � 1. (4.4)

Since | log(�/B)|2 → ∞ slowly as �/B → ∞, this shows that (4.1) fails to produce fast decay of the tail probabilities: The
best rate we could hope for is given by the right-hand side of (4.4).4 And even the above bound is not a worst-possible
case. For instance, suppose d = 1. In that case, ϒ(λ) ≤ f (R)π−1

∫ ∞
−∞(2λ + z2)−1 dz = f (R)/

√
2λ for every λ > 0,

whence we obtain only5

sup
N>0

P
{√

N
∣∣SN,t (ψ,g)

∣∣ > �
} ≤ exp

{
−

√
T/2a(ε)δ| log(�/B)|3/2

f (R)
√

1 − δ

}
for all � > R0B.

We now return to Theorem 2.1, whose proof will require a preliminary lemma, and follows the general ideas of Chen
et al. [7]. It has been proved in Chen et al. [7, Theorem 6.4] that, for each t > 0 and x ∈ Rd , the random variable u(t, x)

is in the Gaussian Sobolev space D1,k (see Nualart [20, Section 1.5]) for every k ≥ 2, and that∥∥Dz,su(t, x)
∥∥

k
� pt−s(y − z), (4.5)

for all t > 0 and x ∈Rd and for a.e. (s, z) ∈ (0, t)×Rd , where the implied constant depends only on (t, k). The following
finds a numerical bound for that implied constant.

Lemma 4.2. For all real numbers 0 < ε < 1, T ≥ t > 0, and k ≥ 2, and for every x ∈ Rd ,

∥∥Ds,zu(t, x)
∥∥

k
≤ 8(|σ(0)| ∨ Lip(σ ))e2T �(a(ε)/k)

ε3/2
pt−s(x − z), (4.6)

valid for a.e. (s, z) ∈ (0, t) ×Rd ,where a(ε) was defined in Theorem 2.1.

Proof. Let zk denote the optimal constant in the BDG Lk(�)-inequality for every real number k ≥ 2. Davis [10] has
evaluated zk in terms of the smallest root of a certain special function. Carlen and Kreé [5] have in turn shown that

zk ≤ 2
√

k for every k ≥ 2, and sup
�≥2

(z�/
√

�) = 2.

4That rate can be achieved. For instance, suppose f is bounded and continuous, as would happen for example if f̂ ∈ L1(Rd ). Then, (vλ ∗ f )(0) ≤
f (0)/λ, and (3.3) shows that the right-hand side of (4.1) is not greater than exp{−const · | log(�/B)|2).
5This rate is also unimprovable as can be seen by inspecting the case f = δ0, for then ϒ(λ) ∝ λ−1/2 for all λ > 0.
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According to Chen et al. [7, (6.4)],

∥∥Ds,zu(t, x)
∥∥

k
≤ 2CT,keλ0(t−s)√

1 − 2(d+2)/2[zk Lip(σ )]2ϒ(λ0)
pt−s(x − y), (4.7)

uniformly for all 0 < t ≤ T , x ∈ Rd , and k ≥ 2, and for almost all (s, z) ∈ (0, t)×Rd . The constant CT,k will be discussed
shortly, and the preceding holds for all λ0 large enough to ensure that ϒ(λ0) < 2−(d+2)/2[zk Lip(σ )]−2, equivalently
λ0 > �(2−(d+2)/2[zk Lip(σ )]−2). Since � is strictly decreasing and zk ≤ 2

√
k for all k ≥ 1, (4.7) holds with zk replaced

by 2
√

k whenever λ0 > �(1/{k2(d+4)/2[Lip(σ )]2}). Set

λ0 := �

(
(1 − ε)2

k2(d+6)/2[Lip(σ )]2

)
,

to obtain

∥∥Ds,zu(t, x)
∥∥

k
≤ 2CT,k√

ε
exp

{
(t − s)�

(
(1 − ε)2

k2(d+6)/2[Lip(σ )]2

)}
pt−s(x − y)

≤ 2CT,keT �(a(ε)/k)

√
ε

pt−s(x − y).

(4.8)

Now we address numerical bounds for the constant CT,k . According to Chen et al. [7, Theorem 6.4], we can select

CT,k := sup
t∈(0,T )

sup
x∈Rd

sup
n≥0

∥∥σ (un(t, x)
)∥∥

k
,

where

un+1(t, x) = 1 +
∫

(0,t)×Rd

pt−s(x − y)σ
(
un(s, y)

)
η(ds dy)

denotes the (n+ 1)st-stage Picard iteration estimate of u for all n ≥ 1, and u0(t, x) = 1 for all t ≥ 0 and x ∈Rd . We warn
that un does not refer to the operation, defined in (2.2), that is applicable to a single spatial function on Rd .

Since σ is Lipschitz continuous,

CT,k ≤ ∣∣σ(0)
∣∣+ Lip(σ ) sup

t∈(0,T )

sup
x∈Rd

sup
n≥0

∥∥un(t, x)
∥∥

k
. (4.9)

For every space-time random field � = {�(t, x)}t≥0,x∈Rd and for all k ≥ 2 and β > 0, define

Nβ,k(�) := sup
t≥0

sup
x∈Rd

(
e−βt

∥∥�(t, x)
∥∥

k

)
.

Our proof of (4.5) (see [7, (5.9)]) hinges on the fact that

Nβ,k(un+1) ≤ 1 + (∣∣σ(0)
∣∣+ Lip(σ )Nβ,k(un)

)√
2kϒ(β),

for all real numbers k ≥ 2 and β > 0, and all integers n ≥ 0. Now suppose β is so large that

ϒ(β) ≤ (1 − ε)2

2k{|σ(0)| ∨ Lip(σ )}2
⇔ β ≥ �

(
(1 − ε)2

2k{|σ(0)| ∨ Lip(σ )}2

)
.

For all values of β , we have Nβ,k(un+1) ≤ 2 + (1 − ε)Nβ,k(un), which yields the following upon iteration for every
n ≥ 0:

Nβ(un+1) ≤ 2
n∑

j=0

(1 − ε)j + (1 − ε)n+1Nβ(u0) ≤ 2(1 − (1 − ε)n+2)

ε
.

We choose the smallest such β , and unscramble the preceding to find that

sup
x∈Rd

sup
n≥0

∥∥un+1(t, x)
∥∥

k
≤ 2

ε
exp

{
t�

(
(1 − ε)2

2k{|σ(0)| ∨ Lip(σ )}2

)}
≤ 2ε−1eT �(a(ε)/k),
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valid for every real number k ≥ 2 and t > 0, and all integers n ≥ 0. Since u0(t, x) = 1 and ε ∈ (0,1), the right-most
quantity in the previous display also bounds ‖u0(t, x)‖k = 1 from above. Therefore, (4.9) yields

CT,k ≤ ∣∣σ(0)
∣∣+ 2 Lip(σ )eT �(a(ε)/k)

ε
≤ 4(|σ(0)| ∨ Lip(σ ))eT �(a(ε)/k)

ε
.

The lemma follows from this and (4.8). �

In order to prove Theorem 2.1, we need the following technical result, which enables us to exchange the Malliavin
derivative and integral. Recall that for g ∈ Lip, Rademacher’s theorem (see Federer [13, Theorem 3.1.6]) ensures that g

has a weak derivative whose essential supremum is Lip(g). Let g′ denote any measurable version of that derivative.

Lemma 4.3. Fix t,N > 0, ψ ∈ L1(Rd) ∩ L2(Rd), and g ∈ Lip. Then, SN,t (ψ,g) ∈D1,k for every k ≥ 2, and

Ds,zSN,t (ψ,g) =
∫
Rd

g′(u(t, x)
)
Ds,zu(t, x)ψN(x)dx,

for almost every (s, z,ω) ∈R+ ×Rd × �.

Proof. Suppose first that ψ ∈ Cc(R
d). As it has been mentioned before, we have shown in [7] that Ds,zg(u(t, x)) =

g′(u(t, x))Ds,zu(t, x) a.s. for almost all (s, z) ∈ R+ × Rd . We can approximate SN,t (ψ,g) by discrete Riemann sums
and then use the linearity and closability of the Malliavin derivative (see Nualart [20, Proposition 1.2.1]) to imply the
result in this case. The general case follows from a density argument. �

Armed with Lemmas 4.2 and 4.3, we proceed with a demonstration of Theorem 2.1.

Proof of Theorem 2.1. Define the random variable

F :=
∫
Rd

g
(
u(t, x)

)
ψN(x)dx.

By Lemma 4.3, F lies in the Gaussian Sobolev space D1,k for every k ≥ 2, and

Ds,zF =
∫
Rd

g′(u(t, x)
)
Ds,zu(t, x)ψN(x)dx,

almost surely for a.e. (s, z) ∈ R+ × Rd . Apply the Clark–Ocone formula, in the form given in [7, Proposition 4.3], in
order to see that

F − E(F ) =
∫

(0,t)×Rd

η(ds dz)

∫
Rd

ψN(x)dxE
(
g′(u(t, x)

)
Ds,zu(t, x) | Fs

)
,

almost surely. To simplify the notation, define

L(s, z) :=
∫
Rd

ψN(x)E
(
g′(u(t, x)

)
Ds,zu(t, x) | Fs

)
dx,

so that the preceding can be restated as F − E(F ) = ∫
(0,t)×Rd Ldη. Thus, the BDG inequality (3.4) implies the following

Poincaré inequality:

∥∥F − E(F )
∥∥

k
≤ 2

√
k

∫ t

0

(∥∥L(s,•)
∥∥

k
∗ ˜
∥∥L(s,•)

∥∥
k
∗ f

)
(0)ds.

Since ‖g′‖L∞(Rd ) = Lip(g), it follows from the conditional Jensen inequality that

∥∥L(s, z)
∥∥

k
≤ Lip(g)

∫
Rd

∣∣ψN(x)
∣∣∥∥Ds,zu(t, x)

∥∥
k

dx

≤ 8 Lip(g)(|σ(0)| ∨ Lip(σ ))e2T �(a(ε)/k)

ε3/2

(|ψN | ∗ pt−s

)
(z);
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see Lemma 4.2 for the last line. Therefore, we can combine the above bounds with the semigroup property of the heat
kernel in order to reach the following conclusion:

∥∥F − E(F )
∥∥

k
≤ 16 Lip(g)(|σ(0)| ∨ Lip(σ ))e2T �(a(ε)/k)

ε3/2

√
k

∫ t

0

(|ψN | ∗ |ψ̃N | ∗ p2(t−s) ∗ f
)
(0)ds.

In accord with Young’s inequality for convolutions, |ψN | ∗ |ψ̃N | ≤ ‖ψN‖2
L2(Rd )

= N−d‖ψ‖2
L2(Rd )

a.e. This implies that

(|ψN | ∗ |ψ̃N | ∗ p2(t−s) ∗ f
)
(0) ≤ N−d‖ψ‖2

L2(Rd )

∫
Rd

(p2(t−s) ∗ f )(x)dx = N−d‖ψ‖2
L2(Rd )

f
(
Rd

)
,

and concludes the proof. �

5. Short-range dependence

Let U := {U(x)}x∈Rd be a stationary random field such that E(|U(0)|2) < ∞. Recall that U is said to be short-range
dependent if∫

Rd

∣∣Cov
[
U(x),U(0)

]∣∣dx < ∞.

It is a well-known observation that when U is short-range dependent, the non-random quantity χ := ∫
Rd Cov[U(x),

U(0)]dx is finite and absolutely convergent, and

Var

(
1

Nd/2

∫
[0,N]d

U(x)dx

)
= 1

Nd

∫
[0,N]d

dx

∫
[0,N]d

dy Cov
[
U(x − y),U(0)

]
→ χ as N → ∞.

5.1. Asymptotics for the variance

Among other things, in this section we will prove as a direct consequence of (1.7) that, whenever g ∈ Lip, the stationary
and square-integrable random field g(u(t,•)) is short-range dependent. We explore some consequences of this short-range
dependence as well.

Lemma 5.1. For every t, T ≥ 0 and g,G ∈ Lip,∫
Rd

∣∣Cov
[
g
(
u(t, x)

)
,G

(
u(T ,0)

)]∣∣dx < ∞.

Consequently, g(u(t,•)) is short-range dependent for every t ≥ 0 and g ∈ Lip.

Before we prove Lemma 5.1, we digress to talk about the role of Lemma 5.1 in our discussion.
In accord with Lemma 5.1,

Bt,T (g,G) :=
∫
Rd

Cov
[
g
(
u(t, x)

)
,G

(
u(T ,0)

)]
dx (5.1)

is a real number for every t ≥ 0 and g,G ∈ Lip.
We have already mentioned the fact that every u(t) is spatially stationary. It is proved in Chen et al. [7] that in

fact u is spatially stationary; that is, the infinite-dimensional process {u(t, x + y); t ≥ 0, x ∈ Rd} has the same law as
{u(t, x); t ≥ 0, x ∈ Rd} for every y ∈Rd . This extended form of stationarity readily implies the following:

1. The form Bt,T : Lip2 → R is bilinear for every t, T ≥ 0.
2. The form B : (t, g) × (T ,G) ∈R2+ × Lip2 → Bt,T (g,G) ∈R is symmetric and non-negative definite.

As a consequence, general theory ensures the existence of a centered Gaussian random field

� := {
�t(ψ,g); t ≥ 0,ψ ∈ L2(Rd

)
, g ∈ Lip

}
, (5.2)
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whose covariance form is given by

Cov
[
�t(ψ,g),�T (�,G)

] = 〈ψ,�〉L2(Rd ) · Bt,T (g,G),

for every t, T ≥ 0, g,G ∈ Lip, and ψ,� ∈ L2(Rd). The bilinear form that appeared earlier in Theorem 2.3 is defined in
terms of Bt,T as follow: For every t ≥ 0 and (g,G) ∈ Lip×Lip,

Bt (g,G) := Bt,t (g,G) =
∫
Rd

Cov
[
g
(
u(t, x)

)
,G

(
u(t,0)

)]
dx, (5.3)

and is the covariance of the centered Gaussian process �t(ψ,•) for every fixed t ≥ 0 and ψ ∈ L2(Rd) such that
‖ψ‖L2(Rd ) = 1.

We can now verify Lemma 5.1.

Proof of Lemma 5.1. We showed in the course of the proof of Theorem 2.1 that for all t ≥ 0 and x ∈ Rd , the following
Clark–Ocone formula holds a.s.:

g
(
u(t, x)

)− E
[
g
(
u(t, x)

)] =
∫

(0,t)×Rd

E
(
g′(u(t, x)

)
Ds,zu(t, x) | Fs

)
η(ds dz).

Of course, a similar expression holds when we replace (g, t, x) by (G,T ,0) everywhere as well. For almost every s > 0
and z ∈Rd , the following random variables are well defined:

�s(z) := E
(
g′(u(t, x)

)
Ds,zu(t, x) | Fs

)
and Ls(y) := E

(
G′(u(T ,0)

)
Ds,yu(T ,0) |Fs

)
,

and in fact define L2(�)-continuous – whence also Lebesgue measurable – processes indexed by (s, z); see Chen et al.
[7]. Set Ws(y, z) := E[�s(z)Ls(y)]. It follows from the Walsh isometry for stochastic integrals that

Cov
[
g
(
u(t, x)

)
,G

(
u(T ,0)

)] =
∫ t∧T

0
ds

∫
Rd

(
Ws(y,•) ∗ f

)
(y)dy. (5.4)

The term t ∧ T appears here because of the fact that if F ∈ D1,2 is measurable with respect to Ft for some t ≥ 0, then
Ds,zF = 0 when s ≥ t ; see Nualart [20].

Since g′ and G′ are respectively essentially bounded by Lip(g) and Lip(G), we first apply the Cauchy–Schwarz
inequality and then the conditional Jensen’s inequality, in this order, to find that∣∣Ws(y, z)

∣∣ ≤ ∥∥�s(z)
∥∥

2

∥∥Ls(y)
∥∥

2

≤ Lip(g)Lip(G)
∥∥Ds,zu(t, x)

∥∥
2

∥∥Ds,yu(T ,0)
∥∥

2.

Apply Lemma 4.2 with k = 2 in order to find that∣∣Ws(y, z)
∣∣ ≤ Kpt−s(x − z)pT −s(y),

where the constant K depends only on (f, g,G,σ, t, T ). It follows from this, the semigroup property of the heat kernel,
and (5.4) that

∣∣Cov
[
g
(
u(t, x)

)
,G

(
u(T ,0)

)]∣∣ ≤ K

∫ t∧T

0
(pT +t−2s ∗ f )(x)ds,

whence∫
Rd

∣∣Cov
[
g
(
u(t, x)

)
,G

(
u(T ,0)

)]∣∣dx ≤ K(t ∧ T )f
(
Rd

)
< ∞,

thanks to (1.7). �

Lemma 5.1, the discussion at the beginning of this section and (5.3) together imply immediately that

lim
N→∞ Var

(
1

Nd/2

∫
[0,N]d

g
(
u(t, x)

)
dx

)
= Bt (g, g),
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for all t ≥ 0 and g ∈ Lip. The following result generalizes this fact to an asymptotic behavior of the covariance form of
the normalized occupation field.

Proposition 5.2. For every t ≥ 0, ψ,� ∈ L2(Rd), and g,G ∈ Lip,

lim
N→∞ Cov

[
Nd/2SN,t (ψ,g),Nd/2SN,t (�,G)

] = 〈ψ,�〉L2(Rd ) · Bt (g,G).

Proof. First, consider the case that ψ,� ∈ L1(Rd) ∩ L2(Rd). In that case,

Cov
[
SN,t (ψ,g),SN,t (�,G)

] =
∫
Rd

ψN(x)dx

∫
Rd

�N(y)dy Cov
[
g
(
u(t, x − y)

)
,G

(
u(t,0)

)]
.

Define

φ(z) := Cov
[
g
(
u(t, z)

)
,G

(
u(t,0)

)]
for all z ∈Rd,

in order to deduce the formula

Cov
[
SN,t (ψ,g),SN,t (�,G)

] = (ψN ∗ �̃N ∗ φ)(0). (5.5)

Lemma 5.1 ensures that φ ∈ L1(Rd); and because g,G ∈ Lip and u is (jointly) continuous in L2(�) – see Dalang [9] –
both φ and its Fourier transform φ̂ are continuous and bounded. Parseval’s identity applies and tells us that we can recast
(5.5) as follows:

Cov
[
SN,t (ψ,g),SN,t (�,G)

] = 1

(2π)d

∫
Rd

ψ̂N (z)�̂N (z)φ̂(z)dz = 1

(2πN)d

∫
Rd

ψ̂(w)�̂(w)φ̂(w/N)dw,

after a change of variables [w = Nz]. Let N → ∞, appeal to the continuity and boundedness of φ̂ as well as the dominated
convergence theorem in order to find that

Cov
[
Nd/2SN,t (ψ,g),Nd/2SN,t (�,G)

] → φ̂(0)

(2π)d

∫
Rd

ψ̂(w)�̂(w)dw as N → ∞. (5.6)

This is another way to state Proposition 5.2 in the special case that ψ,� ∈ L1(Rd) ∩ L2(Rd). Now, Theorem 2.1 ensures
that the quantity on the left-hand side of (5.6) densely defines a continuous functional of (ψ,�) ∈ L2(Rd)×L2(Rd), uni-
formly in N > 0. And the right-hand side is also such a continuous functional thanks to the Cauchy–Schwarz inequality.
Therefore, (5.6) and a standard density argument together imply the proposition in its full generality. �

5.2. Comments on non-degeneracy

The conclusion of Proposition 5.2 is consistent with the Nd/2 scaling of the CLT for the occupation field S[t] in Theo-
rem 2.3. Moreover, we see that the asymptotic covariance of the occupation field, properly normalized, is a multiple of
the form Bt (g,G). Thus, it would be nice to know conditions under which the rate Nd/2 of the convergence in the CLT
of Theorem 2.3 is non-degenerate. We can recast this question by asking the following:

Given a number t ≥ 0, is Bt (g, g) > 0 for some g ∈ Lip?

This is equivalent to asking whether the limiting Gaussian process �t of Proposition 7.4 is non degenerate for given value
of t ≥ 0. Since u(0) ≡ 1, B0(g, g) = 0 for all g ∈ Lip. Thus, the question is interesting only when t > 0. Additionally, the
question is interesting only when σ(1) �= 0, for u(t) ≡ 1 otherwise, which renders �t degenerate for all t ≥ 0.

The following lemma gives a partial answer to the mentioned non-degeneracy question.

Proposition 5.3. Suppose σ satisfies one of the following conditions:

1. Either there exists c0 > 0 such that σ(w) ≥ c0 for all w > 0 or σ(w) ≤ −c0 for all w > 0; or
2. σ(0) = 0, and there exists c1 > 0 such that either σ(w) ≥ c1w for all w > 0 or σ(w) ≤ −c1w for all w > 0.
3. σ(1) �= 0, σ(0) = 0, and either σ(x) or −σ(x) is nonnegative for all x > 0.
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Then, there exists g ∈ Lip such that Bt (g, g) > 0 for every t > 0. Moreover, either condition 1 or 2 implies the existence
of a constant c > 0 such that Bt (g, g) ≥ ctf (Rd) > 0; and under condition 3, there exist a constant δ ∈ (0, t) and R > 0
such that

Bt (g, g) ≥ 2−(d+2)/2σ 2(1)δf
([−R,R]d) > 0. (5.7)

Proof. Throughout the proof, we consider only the Lipschitz-continuous function

g(w) = w for all w ∈ R,

and choose and fix an arbitrary number t > 0. In order to simplify the exposition, we work in the case that f is additionally
a function; the general case that f is a measure works in a similar way though the notation is slightly messier. Therefore,
we omit the proof of the general case.

If condition 1 of the proposition holds, then (3.2), the semigroup properties of the heat kernel, the basic properties of
the Walsh stochastic integral, and the spatial stationarity of u(s) together imply that

Cov
[
g
(
u(t, x)

)
, g

(
u(t,0)

)] = E
[
u(t, x)u(t,0)

]− 1

=
∫ t

0
ds

∫
Rd

dy

∫
Rd

dwpt−s(x − y + w)pt−s(y)E
[
σ
(
u(s,w)

)
σ
(
u(s,0)

)]
f (w)

≥ c2
0

∫ t

0
ds

∫
Rd

dwp2(t−s)(x + w)f (w) = c2
0

∫ t

0
(p2s ∗ f )(x)ds,

which is strictly positive thanks to (1.7). (The final inequality holds also when f is a measure, and for similar reasons.)
Because u(t) is continuous in L2(�) (see Dalang [9]), the left-most quantity defines a continuous function of x. Therefore,
we may integrate [dx] to see that Bt (g, g) > 0 for the present choice of g. This proves that condition 1 implies the strict
positivity of Bt (g, g).

Next suppose condition 2 holds. According to the weak comparison theorem of Chen and Huang (see [6, Corol-
lary 1.4]), P{u(t, x) ≥ 0} = 1 for every x ∈ Rd . Thus, a similar computation as above yields

E
[
u(t, x)u(t,0)

] = 1 +
∫ t

0
ds

∫
Rd

dy

∫
Rd

dwpt−s(x − y + w)pt−s(y)E
[
σ
(
u(s,w)

)
σ
(
u(s,0)

)]
f (w)

≥ 1 + c2
1

∫ t

0
ds

∫
Rd

dwp2(t−s)(x + w)f (w)E
[
u(s,w)u(s,0)

]
.

The asserted non-negativity of u(s) implies now that E[u(s, x)u(s,0)] ≥ 1 for every x ∈ Rd . We enter this bound back
into the right-hand side of the above in order to see that

Cov
[
g
(
u(t, x)

)
, g

(
u(t,0)

)] ≥ c2
1

∫ t

0
ds

∫
Rd

dwp2(t−s)(x + w)f (w) = c2
1

∫ t

0
(p2s ∗ f )(x)ds.

Now proceed as we did under condition 1 to deduce that Bt (g, g) > 0 under condition 2.
Finally, suppose condition 3 holds. Set h(s,w) := E[σ(u(s,w))σ (u(s,0))] and observe that (s,w) �→ h(s,w) is con-

tinuous for all s ≥ 0 and w ∈ Rd . (This follows from the continuity of u in L2(�).) Because h(0,w) ≡ σ 2(1) > 0 for all
w ∈Rd , there exist δ ∈ (0, t) and R > 0 such that

inf
(s,w)∈[0,δ]×[−R,R]d

h(s,w) ≥ σ 2(1)/2. (5.8)

Condition 3 and the fact that u(t, x) ≥ 0 a.s. (see [6]), together imply that g(s,w) ≥ 0. It follows from (5.8) that

Cov
[
g
(
u(t, x)

)
, g

(
u(t,0)

)] ≥ σ 2(1)

2

∫ δ

0
ds

∫
[−R,R]d

dwp2(t−s)(x + w)f (w).

Integrate [dx] to deduce the inequality in (5.7). Thus, it remains to prove that f ([−R,R]d) > 0. We will prove the
following more general fact:

f
([0, r]d) > 0 for every r > 0. (5.9)
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Define

Ir (x) := r−d1[0,r]d (x) for every r > 0 and x ∈Rd .

As we observed in [7, (3.17)], for every r > 0,

(2r)−d1[0,r/2]d ≤ Ir ∗ Ĩr ≤ r−d1[0,r]d on Rd, (5.10)

where h̃(x) := h(−x). Thus,

f
(
x + [0, r/2]d) =

∫
1[0,r/2]d (w − x)f (dw) ≤ (2r)d(Ir ∗ Ĩr ∗ f )(x),

for every r > 0 and x ∈ Rd . Since Ir ∗ Ĩr ∗ f is continuous and positive definite, it is maximized at x = 0. Thus, a second
application of (5.10) yields

sup
x∈Rd

f
(
x + [0, r/2]d) ≤ (2r)d(Ir ∗ Ĩr ∗ f )(0) ≤ 2d

∫
1[0,r]d (w)f (dw) = 2df

([0, r]d).
Now suppose to the contrary that f ([0, r]d) = 0 for some r > 0. If so, then the preceding implies that

f
(
j + [0, r/2]d) = 0 for all j ∈ r

2
Zd .

Sum the above quantity over all j ∈ r
2Z

d in order to deduce that f (Rd) = 0, thus contradicting (1.7). This verifies (5.9)
and completes the proof. �

5.3. Proof of necessity in Theorem 1.1

We are ready to prove the easy half of Theorem 1.1. Namely, we plan to prove that if σ is a non-zero constant – say
σ ≡ c0 �= 0 – and the central limit theorem (CLT) holds for every t > 0 and g ∈ Lip, then f (Rd) < ∞.

Set g(w) = w for all w ∈R and SN := N−d/2
∫
[0,N]d u(1, x)dx for all N > 0. Since SN has a normal distribution with

mean E[u(1,0)] = 1, (CLT) implies that

lim
N→∞ Var(SN) = Var(X) < ∞. (5.11)

Thanks to stationarity, (3.2), and the L2(�)-isometry properties of Walsh stochastic integrals,

Var(SN) = 1

Nd

∫
[0,N]d

dx

∫
[0,N]d

dy Cov
[
u(1, x), u(1, y)

]

→
∫
Rd

Cov
[
u(1, z), u(1,0)

]
dz = c2

0

∫ 1

0
ds

∫
Rd

dz(p2s ∗ f )(z) = c2
0f

(
Rd

)
,

as N → ∞. Thus, we can conclude from (5.11), that f (Rd) < ∞.

6. Asymptotic independence

The primary goal of this section is to prove that SN,t (ψ,g) has good “independence properties,” as ψ ranges over a
sufficiently-large portion of L2(Rd). Before we begin that discussion, let us recall a notion of asymptotic independence
that is relevant to us.

Definition 6.1. Choose and fix an integer m ≥ 1, and let X = {Xj,N ;1 ≤ j ≤ m,N > 0}. We say that X has asymptotic
independence when

lim
N→∞

∣∣∣∣∣E[ei
∑m

j=1 zj Xj,N
]−

m∏
j=1

E
[
eizj Xj,N

]∣∣∣∣∣ = 0 for every z1, . . . , zm ∈ R.
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Suppose X has asymptotic independence, and (as N → ∞) Xj,N converges weakly to a probability measure μj for
every j = 1, . . . ,m. Then it follows immediately from Definition 6.1 that (X1,N , . . . ,Xm,N) converges in distribution to
μ1 × · · · × μm as N → ∞. This property is the main motivation behind the definition of asymptotic independence.

Theorem 6.2. Choose and fix t > 0 and g ∈ Lip, and suppose that φ,ψ ∈ L2(Rd) both have compact support. Then,

∣∣Cov
[
exp

(
iNd/2SN,t (ψ,g)

)
, exp

(−iNd/2SN,t (φ, g)
)]∣∣

�
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|φ| ∗ ˜|ψ |)( η

N

)
, (6.1)

uniformly for all N > 0, where the implied constant does not depend on (ψ,φ,N). Consequently, if the intersection of
the supports of φ and ψ is Lebesgue-null, then Nd/2SN,t (ψ,g) and Nd/2SN,t (φ, g) are asymptotically independent as
N → ∞.

Proof. In order to simplify the typesetting define

� := exp
(
iNd/2SN,t (ψ,g)

)
, � := exp

(−iNd/2SN,t (φ, g)
)
.

According to Lemma 4.3, the Clark–Ocone formula (see Chen et al. [7]) and the chain rule of Malliavin calculus (see
Nualart [20]), �,� ∈ D1,k for every k ≥ 2,

� − E(�) = iNd/2
∫

(0,t)×Rd

E

(
�

∫
Rd

g′(u(t, x)
)
Ds,zu(t, x)ψN(x)dx |Fs

)
η(ds dz), and

� − E(�) = −iNd/2
∫

(0,t)×Rd

E

(
�

∫
Rd

g′(u(t, x)
)
Ds,zu(t, x)φN(x)dx | Fs

)
η(ds dz),

almost surely. In order to further simplify the exposition and the notation, suppose for now that the correlation f is a
function. In that case, Walsh isometry for stochastic integrals ensures that

Cov(�,�) = E
([

� − E(�)
] · [� − E(�)

])
= − NdE

∫ t

0
ds

∫
Rd

dy

∫
Rd

dzf (y − z)

× E

(
�

∫
Rd

g′(u(t, a)
)
Ds,yu(t, a)ψN(a)da |Fs

)
E

(
�̄

∫
Rd

g′(u(t, b)
)
Ds,zu(t, b)φN(b)db | Fs

)
.

In particular, we may use the Cauchy–Schwarz inequality, the conditional Jensen’s inequality, and the fact that |�|∨|�| ≤
1 in order to see that

∣∣Cov(�,�)
∣∣ ≤ Nd

[
Lip(g)

]2
∫ t

0
ds

∫
Rd

dy

∫
Rd

dzf (y − z)AB,

where A := ∫
Rd ‖Ds,yu(t, a)‖2|ψN(a)|da and B := ∫

Rd ‖Ds,zu(t, b)‖2|φN(b)|db. In accord with Lemma 4.2,

A�
(
pt−s ∗ |ψN |)(y) and B �

(
pt−s ∗ |φN |)(z),

for almost all 0 < s < t and y, z ∈ Rd . We emphasize that the implied constants do not depend on any of the interesting
variables here (see Lemma 4.2 for numerical bounds on these constants.) Consequently,

∣∣Cov(�,�)
∣∣� Nd

∫ t

0

(
p2s ∗ |ψN | ∗ |φ̃N | ∗ f

)
(0)ds.

Once again, the implied constants are harmless. Even though we have obtained this inequality under the additional hy-
pothesis that f is a function, it is possible to check that the very same inequality holds more generally when f is a
measure.
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Now we unscramble the convolutions in order to see that

∣∣Cov(�,�)
∣∣�Nd

∫ t

0
ds

∫
Rd

dy

∫
Rd

dz

∫
Rd

dw(p2s ∗ f )(y − w)
∣∣φN(y)

∣∣∣∣ψN(w)
∣∣

=
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)

∫
Rd

dwN−d
∣∣φ(y/N)

∣∣∣∣∣∣ψ
(

y

N
− η

N

)∣∣∣∣,
which yields (6.1).

In order to prove that Nd/2SN,t (ψ,g) and Nd/2SN,t (φ, g) are asymptotically independent as N → ∞ under the
condition that the intersection of the supports of φ and ψ is Lebesgue-null, we can replace φ and ψ respectively by aφ

and bψ in (6.1), where a, b ∈ R are arbitrary numbers. Thus, it suffices to show that

lim
N→∞

∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|φ| ∗ ˜|ψ |)(η/N) = 0. (6.2)

By the Cauchy–Schwarz inequality,

sup
N>0

sup
η∈Rd

∣∣(|φ| ∗ ˜|ψ |)(η/N)
∣∣ ≤ ‖φ‖L2(Rd )‖ψ‖L2(Rd ). (6.3)

It is well known that continuous functions of compact support are dense in L2(Rd). From this it follows that
lim‖h‖→0

∫
Rd |ψ(w + h) − ψ(w)|2 dw = 0. Therefore, the Cauchy–Schwarz inequality implies that

lim
N→∞

(|φ| ∗ ˜|ψ |)(η/N) =
∫
Rd

∣∣φ(w)
∣∣∣∣ψ(w)

∣∣dw, (6.4)

which vanishes since the intersection of the supports of φ and ψ is assumed to have zero Lebesgue measure. Since
f (Rd) < ∞ – see (1.7) – we can deduce (6.2) by combining (6.3) and (6.4), using the dominated convergence theorem.
This completes the proof. �

As was pointed out earlier, Theorem 6.2 implies that if φ,ψ ∈ L2(Rd) have essentially-disjoint compact supports, then
for all a, b ∈R, t ≥ 0, and g ∈ Lip,

∣∣E exp
(
eiaNd/2SN,t (ψ,g)+ibNd/2SN,t (φ,g)

)− E exp
(
eiaNd/2SN,t (ψ,g)

)
E
(
eibNd/2SN,t (φ,g)

)∣∣ → 0

as N → ∞. Equivalently, Nd/2SN,t (ψ,g) and N(d/2SN,t (φ, g) are asymptotically independent as N → ∞. Now we
bootstrap Theorem 6.2 from a statement about two functions (namely, φ and ψ ) to one about any number of functions in
L2(Rd) that have pairwise disjoint compact supports. In any case, the end result is the following corollary to Theorem 6.2.
For simplicity, let supp[h] denote the support of the function h :Rd →R, and define Leb to be the Lebesgue measure on
Rd .

Corollary 6.3. Choose and fix t ≥ 0 and g ∈ Lip, and let m ≥ 2 be an integer. Choose ψ1, . . . ,ψm ∈ L2
c(R

d). Then, for
every a1, . . . , am ∈R,∣∣∣∣∣E[ei

∑m
j=1 aj Nd/2SN,t (ψj ,g)

]−
m∏

j=1

E
[
eiaj Nd/2SN,t (ψj ,g)

]∣∣∣∣∣
�

m∑
k=2

k−1∑
j=1

|ajak|
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|ψj | ∗ |ψ̃k|

)( η

N

)
, (6.5)

uniformly for all N > 0, and the implied constant is equal to the implied constant of (6.1) and hence does not depend on
(m,a1, . . . , am,ψ1, . . . ,ψm,N). Moreover, suppose that ψ1, . . . ,ψm ∈ L2

c(R
d) satisfy the following condition:

Leb
(
supp[ψj ] ∩ supp[ψk]

) = 0 for all 1 ≤ j �= k ≤ m. (6.6)

Then, Nd/2SN,t (ψj , g), j = 1, . . . ,m are asymptotically independent as N → ∞.
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Proof. Let Yj := Nd/2ajSN,t (ψj , g) = Nd/2SN,t (ajψj , g) for j = 1, . . . ,m. Define Sk := ∑k
j=1 Yj , �k := ∑k

j=1 ajψj

for every k = 1, . . . ,m. Observe that Sk = Sk−1 +Yk , Sk−1 = Nd/2SN,t (�k−1, g), and �k,ψk+1, . . . ,ψm ∈ L2(Rd) have
compact supports that are pairwise disjoint (for all k = 2, . . . ,m) if (6.6) holds. In particular, if we set [m] := {1, . . . ,m},
then we may deduce from Theorem 6.2 the existence of a real number L > 0 – not depending on (ψ1, . . . ,ψk,N) – such
that ∣∣∣∣∣E[eiSk

] ∏
�∈[m]\[k]

E
[
eiY�

]− E
[
eiSk−1

] m∏
�=k

E
[
eiY�

]∣∣∣∣∣ ≤ ∣∣E[eiSk
]− E

[
eiSk−1

]
E
[
eiYk

]∣∣

≤ L|ak|
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|�k−1| ∗ |ψ̃k|

)( η

N

)
,

uniformly for all integers k = 2, . . . ,m. Next, we may write things as a telescoping sum as follows:∣∣∣∣∣E[eiSm
]−

m∏
j=1

E
[
eiYj

]∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=2

{
E
[
eiSk

] ∏
�∈[m]\[k]

E
[
eiY�

]− E
[
eiSk−1

] m∏
�=k

E
[
eiY�

]}∣∣∣∣∣
≤ L

m∑
k=2

|ak|
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|�k−1| ∗ |ψ̃k|

)( η

N

)
,

≤ L

m∑
k=2

k−1∑
j=1

|ajak|
∫ t

0
ds

∫
Rd

dη(p2s ∗ f )(η)
(|ψj | ∗ |ψ̃k|

)( η

N

)
,

which proves (6.5).
The asymptotical independence property of the random variables Nd/2SN,t (ψj , g), j = 1, . . . ,m as N → ∞ under

condition (6.6) follows from the same arguments as in the proof of Theorem 6.2. �

Remark 6.4. The last portion of the proof used a method that involves telescoping sums. That method was introduced first
in 1959 by Volkonskii and Rozanov [21] in order to establish asymptotic independence for strongly-mixing sequences.
For a modern, comprehensive, exposition see Bradley [3, Corollary 1.13, p. 32].

7. Proof of Theorems 2.3 and 2.4

7.1. Convergence in a special case

Choose and fix some t ≥ 0, g ∈ Lip, a ∈ R and y′, y ∈Rd such that y′
j ≤ yj for all j = 1, . . . , d . Let

Q(r) = Q
(
a, r;y′, y

) := [
a, a + r

(
y1 − y′

1

)]× [
y′

2, y2
]× · · · × [

y′
d, yd

]
for every r ≥ 0. (7.1)

For every N > 0, let us define a one-parameter stochastic process XN := {XN(r)}r≥0 as follows:

XN(r) := Nd/2SN,t (1Q(r), g) for every r ≥ 0 and N > 0.

We define also a one-parameter process X via

X(r) := �t(1Q(r), g) for every r ≥ 0.

The main goal of this section is to prove the following special case of Theorems 2.3 and 2.4:

XN(1)
d−→ X(1) as N → ∞. (7.2)

This is a very special case of Lemma 7.5, but we will see later on that Lemma 7.5 is also a consequence of (7.2).
Unfortunately, we do not know of a direct proof of (7.2) that is simple to present. Fortunately, it is not so hard to prove
the following more general result, as it rests on facts from the general theory of Lévy processes. Here and throughout the

symbol
fdd−→ refers to weak convergence of finite-dimensional distributions.
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Proposition 7.1. XN
fdd−→ X as N → ∞.

In the first step of the proof of Proposition 7.1 we identify the limiting object as a particularly-simple Lévy process.

Lemma 7.2. X is a one-dimensional Brownian motion with variance Bt (g, g)
∏d

j=1(yj − y′
j ).

Proof. If r,R ≥ 0, then (5.2) and (5.3) together imply that

Cov
[
X(r),X(R)

] = Bt (g, g)(1Q(r),1Q(R))L2(Rd ) = Bt (g, g) × min(r,R) ×
d∏

j=1

(
yj − y′

j

)
.

Since � is a centered Gaussian process, so is X. This completes the proof. �

Next we have the following uniform tightness result.

Lemma 7.3. The laws of {XN(r)}N>0 are tight uniformly over all r ∈ [0,1]; in fact,

sup
r∈[0,1]

sup
N>0

E
(∣∣XN(r)

∣∣k) ≤
k∏

j=1

(
yj − y′

j

)k/2
for every real number k ≥ 2. (7.3)

Proof. According to Theorem 2.1, for every k ≥ 2,

sup
N>0

∥∥XN(r)
∥∥2

k
� ‖1Q(r)‖2

L2(Rd )
= r

d∏
j=1

(
yj − y′

j

)
,

where the implied constant does not depend on r . This implies (7.3). To finish, we apply Chebyshev’s inequality and (7.3)
in order to see that supr∈[0,1] supN>0 P{|XN(r)| > �} = o(1) as � → ∞. This implies the desired uniform tightness. �

Proof of Proposition 7.1. Without loss of generality, we restrict the processes XN and X to r ∈ [0,1]. We first apply
Theorem 2.1 and stationarity in order to see that there exists a real number C > 0 such that, for every k ≥ 2,

sup
N>0

∥∥XN(R) − XN(r)
∥∥

k
≤ C‖1Q(R) − 1Q(r)‖L2(Rd ) = C′√R − r, (7.4)

uniformly for all R ≥ r ≥ 0, where C′ = C
∏d

j=1(yj − y′
j )

1/2, and C does not depend on r and R. Lemma 7.3 and (7.4)
imply that {XN(r)}r∈[0,1] is tight in C[0,1]. Hence, for every unbounded sequence 0 < N1 < N2 < · · · there exists a
subsequence N ′ = {N ′

n}∞n=1 and a process Y = {Y(r)}r∈[0,1] such that

XN ′
n

C[0,1]−−−→ Y as n → ∞. (7.5)

As it turns out, {Y(r)}r∈Q∩[0,1] is a rather nice stochastic process. In fact, we have the following.6

Claim A. We can realize Y = {Y(r)}r∈∩[0,1] as a process with stationary and independent increments such that Y(0) = 0
and E[Y(r)] = 0 for all r ∈ [0,1].

In order to prove Claim A, let us choose and fix an integer M ≥ 1. An application of Theorem 2.1 reveals that
XN(0) = 0; and Corollary 6.3 ensures that, whenever 0 =: r0 < r1 < · · · < rM ,

{
XN(ri+1) − XN(ri)

}M−1
i=0 are asymptotically independent as N → ∞.

Hence the random variables Y(r1), Y (r2) − Y(r1), . . . , Y (rM) − Y(rM−1) are independent for (ri)
M
i=1 ⊂ R. Moreover,

since u(t) is spatially stationary, the law of XN(ri+1) − XN(ri) is the same as the distribution of XN(ri+1 − ri) for
every i = 0, . . . ,M − 1, which implies that Y(ri+1) − Y(ri) has the same distribution as Y(ri+1 − ri). Therefore, Y =

6Caveat. Infinitely-divisible processes need not be Lévy processes, as the latter processes must be càdlàg as well.
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{Y(r)}r∈[0,1] is an infinitely-divisible process with stationary increments. It remains to prove that E[Y(r)] = 0 for all r ,
but this follows from the fact that E[XN(r)] = 0 for all N,r > 0, and uniform integrability which is assured by (7.3).
These remarks together prove Claim A.

Claim B. The process Y = {Y(r)}r∈[0,1] is a Brownian motion normalized such that Var[Y(1)] = Bt (g, g)
∏d

j=1(yj −y′
j ).

Lévy proved a long time ago that the only continuous, mean-zero Lévy process is Brownian motion. This is in fact
an immediate consequence of the Lévy–Khintchine formula; see Bertoin [1]. Therefore, Claim B is proved once we
show that the variance of Y(1) is as stated. But that variance formula follows at once from Proposition 5.2 and uniform
integrability assured by (7.3). This proves Claim B.

We are ready to complete the proof of Proposition 7.1.
So far, we have proved that for every unbounded sequence {Nn}∞n=1 there exists a further subsequence {N ′

n}∞n=1 such
that the distributions of XN ′

n
converge to those of a Brownian motion Y in the space C[0,1] as n → ∞, and the speed of

that Brownian motion is always Bt (g, g)
∏d

j=1(yj − y′
j ). Lemma 7.2 tells us that the law of Y is the same as the law of

X regardless of the choice of the original subsequence {Nn}∞n=1. This proves Proposition 7.1. �

7.2. Convergence of f.d.d.s

The following is a first key step in the proofs of both Theorem 2.3 and Theorem 2.4, and is the main result of this
subsection.

Proposition 7.4. For every t ≥ 0 and for every ψ ∈ L2(Rd) and g ∈ Lip,

Nd/2SN,t (•, g)
fdd−→ �t(•, g) and Nd/2SN,t (ψ,•)

fdd−→ �t(ψ,•), (7.6)

as N → ∞.

First we verify the following one-dimensional version of Proposition 7.4.

Lemma 7.5. For every t ≥ 0 and for every ψ ∈ L2(Rd) and g ∈ Lip,

Nd/2SN,t (ψ,g)
d−→ �t(ψ,g) as N → ∞. (7.7)

Proposition 7.4 follows at once from Lemma 7.5 and the following simple conditional result.

Lemma 7.6. If Lemma 7.5 is true, so is Proposition 7.4.

Proof. Choose and fix some g ∈ Lip. Cramér–Wold theorem assures us that the first assertion of (7.6) is equivalent to the
statement that for every a1, . . . , am ∈R and ψ1, . . . ,ψm ∈ L2(Rd),

Nd/2
m∑

i=1

aiSN,t (ψi, g)
d−→

m∑
i=1

ai�t (ψi, g). (7.8)

Define ψ := ∑m
i=1 aiψi ∈ L2(Rd) and use bilinearity to see that the left-hand side of (7.8) is equal to Nd/2SN,t (ψ,g)

whereas the right-hand side of (7.8) is equal to �t(ψ,g). Therefore, eq. (7.8) – and hence also the first assertion of (7.6) –
both follow from (7.7). The second claim in (7.6) is proved similarly. �

Thus, it remains to demonstrate Lemma 7.5. That proof requires some effort which we distribute in parts. The first
portion of that proof is a “density lemma”, that is presented next.

Lemma 7.7. Suppose that E is a dense subset of L2(Rd) such that (7.7) holds for every ψ ∈ E . Then, (7.7) is valid for
all ψ ∈ L2(Rd).

Proof. Choose and fix (ψ,g) ∈ L2(Rd)×Lip. For every ε > 0 we can find φ ∈ E such that ‖φ−ψ‖L2(Rd ) ≤ ε. According
to Theorem 2.1, there exists a real number K – independent of ψ and φ – such that

sup
N>0

∥∥Nd/2SN,t (ψ,g) − Nd/2SN,t (φ, g)
∥∥

2 = sup
N>0

∥∥Nd/2SN,t (ψ − φ,g)
∥∥

2 ≤ Kε.
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Let H : R→R be bounded and Lipschitz continuous. By virtue of the definition of E ,

lim
N→∞�N = 0, where �N := ∣∣E[H (

Nd/2SN,t (φ, g)
)]− E

[
H
(
�t(φ,g)

)]∣∣.
Now, ∣∣E[H (

Nd/2SN,t (φ, g)
)]− E

[
H
(
Nd/2SN,t (ψ,g)

)]∣∣ ≤ K Lip(H)ε,

and ∣∣E[H (
�t(φ,g)

)]− E
[
H
(
�t(ψ,g)

)]∣∣ ≤ Lip(H)
∥∥�t(φ,g) − �t(ψ,g)

∥∥
2 = Lip(H)

∥∥�t(φ − ψ,g)
∥∥

2

= Lip(H)‖φ − ψ‖L2(Rd )

√
Bt (g, g) ≤ Lip(H)

√
Bt (g, g)ε

=: LLip(H)ε,

for a real number L > 0 that is independent of ψ and φ. Thus, it follows from the triangle inequality that∣∣E[H (
Nd/2SN,t (ψ,g)

)]− E
[
H
(
�t(ψ,g)

)]∣∣ ≤ �N + (K + L)Lip(H)ε.

Let N → ∞ and ε → 0, in this order, to see that the quantity in the left-hand side of the above tends to zero as N → ∞.
Because bounded, Lipschitz-continuous functions are convergence-determining, this suffices to establish the asserted
weak convergence of Nd/2SN,t (ψ,g) to �t(ψ,g). �

In light of Lemma 7.6, it suffices to prove Lemma 7.5 for a dense class E in L2(Rd); Proposition 7.4 follows a fortiori.

Proof of Lemma 7.5. Define E to be the collection of all functions ψ ∈ L2
c(R

d) that have the form,

ψ = ψ1 + · · · + ψm, where ψi(x) = ai1[yi ,zi ](x) for all x ∈Rd , (7.9)

m ≥ 1 is an integer, a1, . . . , am ∈R \ {0}, y1, . . . , ym ∈Rd , z1, . . . , zm ∈Rd , with yj ≤ zj ; and

Leb
([

yi, zi
]∩ [

yj , zj
]) = 0 whenever 1 ≤ i �= j ≤ m.

It is easy to see that E is dense in L2(Rd); this is an exercise in the theory of Lebesgue integration. Therefore, Lemma 7.7

will imply Lemma 7.5 once we prove that Nd/2SN,t (ψ,g)
d−→ �t(ψ,g), as N → ∞, for every t ≥ 0, ψ ∈ E , and g ∈ Lip.

With this aim in mind, let us choose and fix some t ≥ 0, ψ ∈ E , and g ∈ Lip, and assume that ψ has the representation in
(7.9). By bilinearity,

Nd/2SN,t (ψ,g) = Nd/2
m∑

i=1

SN,t (ψi, g) =:
m∑

i=1

Xi,N a.s.,

where Xi,N := Nd/2SN,t (ψi, g). Corollary 6.3 ensures that {Xi,N }mi=1 describes an asymptotically independent sequence
as N → ∞; and Proposition 7.1 implies that

Xi,N
d−→ �t(ψi, g) as N → ∞, for every i = 1, . . . ,m.

The asserted asymptotic independence then implies that

Nd/2SN,t (ψ,g)
d−→ Y1 + · · · + Ym as N → ∞,

where Y1, . . . , Ym are independent, and the distribution of Yi is the same as that of �t(ψi, g) for every i = 1, . . . ,m.
Because the supports of the ψi ’s are disjoint, �t(ψ1, g), . . . ,�t (ψm,g) are uncorrelated, hence independent, Gaussian
random variables. In particular, we can rewrite the preceding in the following equivalent form:

Nd/2SN,t (ψ,g)
d−→ �t(ψ1, g) + · · · + �t(ψm,g) as N → ∞.

This fact and the linearity of φ �→ �t(φ,g) together imply that Nd/2SN,t (ψ,g) converges in distribution to �t(ψ,g) for
every ψ ∈ E , as was desired. This concludes the proof of Lemma 7.5. �
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7.3. Metric entropy

Let (T ,d) be a compact metric space and X := {X(t)}t∈T a stochastic process indexed by T . Define �(T ) :=
maxs,t∈T d(s, t) to be the diameter of T , and set

�(u) := max
s,t∈T

P
{|Xs − Xt | > d(s, t)u

}
for all u ≥ 0.

We may now define a “tail probability function,”

τ (λ) :=
∫ ∞

0

(
λ�(u) ∧ 1

)
du for all λ > 0.

It is known generally that, if τ (λ) → 0 sufficiently rapidly as λ → 0 then X has a continuous modification. The following
result is a concrete version of a family of known results in the literature, particularly well worked out for Gaussian
processes X (see Chapter 6 of Marcus and Rosen [18], for example). Here and throughout, define NT to be the metric
entropy of (T , d). That is, for every r > 0, NT (r) := the minimum number of open d-balls of radius r needed to cover
T .

Theorem 7.8. For every finite set S ⊂ T and for all δ ∈ (0,�(S)),

E
(

max
s,t∈S:

d(s,t)≤δ

|Xs − Xt |
)

≤ 32
∫ δ/4

0
τ
(∣∣NS(r)

∣∣2)dr. (7.10)

In particular, if
∫

0+ τ (|NT (r)|2)dr < ∞, then X has a continuous modification.

The proof involves a more-or-less standard “chaining argument.” We include it in order to demonstrate the ubiquitous
nature of the multiplicative constant “32” in front of the metric entropy integral on the right-hand side of (7.10).

First, we establish two elementary lemmas.

Lemma 7.9. Let � ⊂ T × T be a finite set of cardinality |�|. Then,

E
[

max
(s,t)∈�

|Xt − Xs |
]

≤ τ
(|�|) · sup

(s,t)∈�

d(s, t).

Proof. For every u > 0,

P

{
max

(s,t)∈�

∣∣∣∣Xt − Xs

d(s, t)

∣∣∣∣ > u

}
≤ 1 ∧

∑
(s,t)∈�

P

{∣∣∣∣Xt − Xs

d(s, t)

∣∣∣∣ > u

}
≤ |�|�(u) ∧ 1,

where 0 ÷ 0 := 0. Integrate [du] to see that

E

(
max

(s,t)∈�

∣∣∣∣Xt − Xs

d(s, t)

∣∣∣∣
)

≤ τ
(|�|).

This implies the lemma. �

Next we apply Lemma 7.9 to improve itself.

Lemma 7.10. If T is a finite set, then

max
t0∈T

E
(

max
t∈T

|Xt − Xt0 |
)

≤ 8
∫ �(T )/4

0
τ
(
NT (r)

)
dr.

Proof. Let P T denote the Kolmogorov capacity of (T ,d). That is, for every r > 0, P T (r) := the greatest integer m ≥ 1
such that there exist points t1, . . . , tm ∈ T such that d(ti , tj ) > r whenever i �= j . It is well known that

NT (2r) ≤ P T (r) ≤ NT (r/2) for all r > 0; (7.11)

see for example Marcus and Rosen [18, Lemma 6.1.1].
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For every integer n ≥ 0 define

εn := 2−n�(T ) and Kn := P T (εn).

One can see readily that 1 = K0 ≤ K1 ≤ K2 ≤ · · · .
The definition of Kolmogorov capacity ensures that for every integer n ≥ 0 we can find a finite set Tn ⊂ T such that:

• |Tn| = Kn, where | · | denotes cardinality;
• d(u, v) > εn for all distinct pairs of points u,v ∈ Tn;
• infs∈Tn d(s, t) ≤ εn for all t ∈ T ; and
• There exists an integer M = M(T ,d) ≥ 1 such that Tn = T for all n ≥ M .

For every n ≥ 0 let πn denote the projection of T onto Tn; more precisely, πn(t) denotes the point in Tn that is closest
to t for every t ∈ T . If there are many such points then we break the ties in some arbitrary fashion. Since T0 is a singleton
we can write it as T0 = {t0} and observe that π0(t) = t0 for all t ∈ T . Also, observe that t0 ∈ T can be chosen in a
completely arbitrary manner, without altering any of the preceding statements.

Since Tn = T for all n ≥ M it follows that πn(t) = t for every n ≥ M . Thus, to every t ∈ T we can associate a
“chain” {ti}∞i=0 of points as follows: Set tn = πM(t) = t for all n ≥ M , and then recursively define ti−1 = πi−1(ti) for all
i = M, . . . ,1. This sequence ends with t0 – the unique element of T0 – and therefore, Xt − Xt0 = ∑∞

i=0(Xti+1 − Xti ).
Clearly, all of the summands vanish after the M-th term. In any case, it follows that

|Xt − Xt0 | ≤
∞∑
i=0

max
u∈Ti+1

|Xu − Xπi(u)|,

uniformly for all t ∈ T . Since the right-hand side does not depend on the point t , Lemma 7.9 implies that

E
(

max
t∈T

|Xt − Xt0 |
)

≤
∞∑
i=0

τ
(|Ti+1|

)
εi =

∞∑
i=0

τ
(
P T (εi+1)

)
εi;

we have used the fact that |Tj | = P T (εj ). Since εi = 4(εi+1 − εi+2) for every i ≥ 0, we can then write

E
(

max
t∈T

|Xt − Xt0 |
)

≤ 4
∞∑
i=0

∫ εi+1

εi+2

τ
(
P T (εi+1)

)
dr ≤ 4

∞∑
i=0

∫ εi+1

εi+2

τ
(
P T (r)

)
dr

= 4
∫ �(T )/2

0
τ
(
P T (r)

)
dr ≤ 4

∫ �(T )/2

0
τ
(
NT (r/2)

)
dr;

see (7.11). Because t0 ∈ T is arbitrary, this and a change of variables together yield the lemma. �

We are ready to prove Theorem 7.8

Proof of Theorem 7.8. We need only verify (7.10); the continuity portion follows from the quantitative bound (7.10) and
standard arguments. From now on, we may (and will) assume without loss of generality that T is finite and that S = T .
Otherwise, restrict the index set of X to S and relabel S as T everywhere that follows.

The remainder of the proof of (7.10) hinges on “tensorization.”
Define T̃ := T × T , and endow it with “product distance,”

d̃
(
(s, t),

(
s′, t ′

)) := d
(
s, s′)∨ d

(
t, t ′

)
for every s, t, t ′, t ′ ∈ T .

The product nature of T̃ implies that if the balls B1, . . . ,Bm form an ε-cover for (T ,d), then certainly the balls {Bi ×
Bj }mi,j=1 form an ε-cover for (T̃ , d̃). Consequently,

N T̃ (ε) ≤ [
NT (ε)

]2 for every ε > 0. (7.12)

Consider the stochastic process X̃, indexed by T̃ , as follows:

X̃(s,t) := Xt − Xs for every (s, t) ∈ T̃ .
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We may combine (7.12) and Lemma 7.10 (applied to X̃ in place of X) in order to see that

max
t̃0∈T̃

E
(

max
(s,t)∈T̃

|X̃(s,t) − X̃t̃0
|
)

≤ 8
∫ �(T̃ )/4

0
τ̃
(∣∣NT (r)

∣∣2)dr, (7.13)

where τ̃ (λ) := ∫ ∞
0 (λ�̃(u) ∧ 1)du for every λ > 0, and

�̃(u) := sup
(s,t),(s′,t ′)∈T̃

P
{|X̃(s,t) − X̃(s′,t ′)| > d̃

(
(s, t),

(
s′, t ′

))
u
} [u > 0].

Note that

�̃(u) ≤ sup
(s,t),(s′,t ′)∈T̃

P
{|Xs − Xs′ | + |Xt − Xt ′ | > d̃

(
(s, t),

(
s′, t ′

))
u
}

≤ sup
(s,t),(s′,t ′)∈T̃

P

{
|Xs − Xs′ | > 1

2
d̃
(
(s, t),

(
s′, t ′

))
u

}

+ sup
(s,t),(s′,t ′)∈T̃

P

{
|Xt − Xt ′ | > 1

2
d̃
(
(s, t),

(
s′, t ′

))
u

}
.

Therefore, �̃(u) ≤ 2�(u/2) for every u ≥ 0, by virtue of the definition of d̃ and � . In particular,

τ̃ (λ) ≤
∫ ∞

0

(
2λ�(u/2) ∧ 1

)
du ≤ 4τ (λ) for all λ > 0.

Since �(T̃ ) = �(T ), (7.13) implies that, for every t̃0 ∈ T̃ ,

E
(

max
(s,t)∈T̃

|X̃(s,t) − X̃t̃0
|
)

≤ 32
∫ �(T )/4

0
τ
(∣∣NT (r)

∣∣2)dr.

We now choose t̃0 := (t0, t0) for an arbitrary but fixed point t0 ∈ T . For this choice, X̃t̃0
= 0, and the theorem follows. �

7.4. Proof of Theorems 2.3 and 2.4

We apply Lemma 4.1 in order to see that there exist constants K,L > 0 such that

�(u) := sup
N>0

sup
ψ∈L2(Rd )

sup
g∈Lip

P
{
Nd/2

∣∣SN,t (ψ,g)
∣∣ > ‖ψ‖L2(Rd )‖g‖Lipu

}
� exp

{
− L log+(u)

ϒ(K log+(u))

}
,

uniformly for u > 0.
Because the behavior of ϒ can depend on the fine details of the statistics of (1.1), it is better to use the simple but

general fact that limλ→∞ ϒ(λ) = 0 in order to see that

�(u)� u−1/ε for all ε ∈ (0,1) and u > 0.

Therefore,

τ (λ) :=
∫ ∞

0

(
λ�(u) ∧ 1

)
du�

∫ ∞

0

(
λ

u1/ε
∧ 1

)
du ∝ λε for all λ > 0.

Since F is separable, let {r1, r2, . . .} be a dense subset of F and denote Fn = F ∩{r1, r2, . . . , rn}. Now apply Theorem 7.8
in order to see that for all ε ∈ (0,1) there exists C(ε) > 0 such that for all δ � 1,

sup
N>0

Nd/2E
(

max
ψ,�∈Fn:

‖�−ψ‖
L2(Rd )

≤δ

∣∣SN,t (�,g) − SN,t (ψ,g)
∣∣) ≤ C(ε)

∫ δ/4

0

[
NFn,L2(Rd )(r)

]ε dr

≤ C(ε)

∫ δ/4

0

[
NF ,L2(Rd )(r)

]ε dr.
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By monotone convergence theorem, we let n → ∞ to obtain that

sup
N>0

Nd/2E
(

max
ψ,�∈F :

‖�−ψ‖
L2(Rd )

≤δ

∣∣SN,t (�,g) − SN,t (ψ,g)
∣∣) ≤ C(ε)

∫ δ/4

0

[
NF ,L2(Rd )(r)

]ε
dr.

Similarly, we can see that for all ε ∈ (0,1) there exists C′(ε) > 0 such that for all δ � 1,

sup
N>0

Nd/2E
(

max
g,G∈G:

‖G−g‖Lip≤δ

∣∣SN,t (ψ,g) − SN,t (ψ,G)
∣∣) ≤ C′(ε)

∫ δ/4

0

[
NG,Lip(r)

]ε dr.

The above two bounds imply the requisite tightness results. Proposition 7.4 and tightness together imply both Theo-
rems 2.3 and 2.4; see [2, p. 58 and Theorem 5.1].

7.5. Some examples

Let us conclude with a few elementary examples of the sorts of classes of functions that Theorems 2.3 and 2.4 refer to.

Example 7.11. For our first example, let us choose and fix some vector m ∈ Rd+ and define

F := {
1[0,y] : y ∈ [0,m]d}.

Because ‖1[0,y] − 1[0,z]‖L2(Rd ) = |[0, y]�[0, z]|1/2 � ‖y − z‖1/2, uniformly for all y, z ∈ [0,m]d , it follows that

NF ,L2(Rd )(r) � r−2d uniformly for all r ∈ (0,1), and so
∫ 1

0 [NF ,L2(Rd )(r)]ε dr < ∞ for every ε ∈ (0,1/(2d)). Thus,
we see that Theorem 2.3 implies the weak convergence (2.7) to the Brownian sheet.

Example 7.12. Suppose C and D are compact subsets of L2(Rd) such that
∫ 1

0 [NC,L2(Rd )(r)]ε dr +∫ 1
0 [ND,L2(Rd )(r)]ε dr < ∞ for some ε > 0. Define

F := {C ∗ D : C ∈ C,D ∈ D},
where “∗” refers to the convolution of two functions. Then by Young’s inequality for convolutions,∥∥(C ∗ D) − (c ∗ d)

∥∥
L2(Rd )

≤ ∥∥(C ∗ D) − (C ∗ d)
∥∥

L2(Rd )
+ ∥∥(C ∗ d) − (c ∗ d)

∥∥
L2(Rd )

≤ ‖C‖L2(Rd )‖D − d‖L2(Rd ) + ‖d‖L2(Rd )‖C − c‖L2(Rd )

� ‖C − c‖L2(Rd ) + ‖D − d‖L2(Rd ),

uniformly for every c,C ∈ C and d,D ∈ D . Thus, NF ,L2(Rd )(r) � NC,L2(Rd )(r)ND,L2(Rd )(r), uniformly for all r ∈
(0,1). In particular,

∫ 1
0 [NF ,L2(Rd )(r)]ε/2 dr < ∞, thanks to the Cauchy–Schwarz inequality.

Example 7.13. Choose and fix a C1-function g such that g and g′ are Lipschitz. Define ga(u) := g(u−a) for all a,u ∈R,
and set

G :=
⋃

a∈[−n,n]
{ga},

where n > 0 is a fixed real number. Since ‖ga − gb‖Lip ≤ (Lip(g) + Lip(g′))|b − a| for all a, b ∈ R, it follows that

NG,Lip(r) � r−1, uniformly for all r ∈ (0,1), and hence
∫ 1

0 [NG,Lip(r)]ε dr < ∞ for every ε ∈ (0,1).

Example 7.14. Choose and fix a C1-function g such that g and g′ are Lipschitz. This time define ga,b(u) := bg(u/a) for
all b,u ∈R and a > 0, and set

G :=
⋃

b∈[−n,n]
a∈[1/m,m]

{ga,b},
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where m > 1 and n > 0 are fixed real numbers. Because ‖ga,b − gA,B‖Lip � |A − a| + |B − b|, uniformly for
all a,A ∈ [1/m,m] and b,B ∈ [−n,n], it follows that NG,Lip(r) � r−2 uniformly for every r ∈ (0,1) and hence∫ 1

0 [NG,Lip(r)]ε dr < ∞ for every ε ∈ (0,1/2).
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